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1.0       GENERAL 
 
Nepal's Kali Gandaki "A" HEPP is a 144 megawatt (MW), run-of-river 
hydroelectric plant with a daily pondage capacity of 3.1 million m^3.  The 
project is located on the Kali Gandaki River approximately 180.0 km west of 
Kathmandu near the town of Tansen (see attached maps). The main features 
of the project are a concrete gravity diversion dam, desander, power tunnel, 
and powerhouse. The Government of Nepal plans to have the project on line 
by the third quarter of the year 2000. The basis of the project is to short-circuit 
a loop of approximately 45.0 km in the Kali Gandaki River by the power or 
headrace tunnel, about 6.0 km in length, thus developing a gross head of 
about 124.0 m. 
   
The main objective of the project is to meet the demand for electric power in 
Nepal at least cost in an environmentally sustainable and socially acceptable 
manner. With its installed capacity of 144 MW, the project will generate 842 
gigawatt-hours (GWh) of renewable energy annually using the flow of the Kali 
Gandaki River. 
 
The project is owned by the Nepal Electricity Authority (NEA) and financed by 
the Asian Development Bank and Overseas Economic Corporation Fund of 
Japan. The consultant services for construction design and project 
implementation have been awarded to Morrison Knudsen International, Inc., 
USA. The construction contract (construction of civil works for the diversion 
dam, desanding facilities, headrace tunnel and power plant facilities) has been 
awarded to Impregilo S.p.A, Italy. Noell Stahl und Maschinenbau GmbH, 
Germany will furnish and install the hydraulic steelworks and Mitsui/Toshiba of 
Japan will furnish and install the electrical and mechanical works. 
  
Kali Gandaki "A" is currently the largest hydroelectric power project under 
construction in Nepal and is estimated to cost approximately 470 million U.S. 
dollars. 
 
The writer served the Kali Gandaki "A" HEPP as Chief Geologist/Geotechnical 
and Principal Design Engineer under a contract with Morrison Knudsen 
International, Inc. (MKI) for a period of seven months in 1998. During that 
period all major surface excavations for the main civil facilities (desander, 
powerhouse, and surge tank) needed to be completed. The writer was 
responsible for conducting the detailed geologic and geotechnical 
investigations for the construction design and project implementation phase of 
Kali Gandaki "A". This included the stability evaluation, design, 
instrumentation, and construction supervision of all major excavations. He 
directed and supervised the work of a team of native professional geologists, 
civil and structural engineers, surveying and drafting personnel, and a private 



 

 

consultant. 
 
2.0       FACILITIES 
 
The main civil facilities of the project are comprised of a 44.0 m-high concrete 
gravity dam with an adjacent spillway, comprising three 15.0 m-wide bays, to 
be closed by 19.0 m-high radial gates (the power intake on the left bank leads 
to twin desanding basins that have a combined width of 70.0 m, from which 
the flow will be conveyed to the headrace tunnel by a box culvert conduit); a 
6.0 km-long headrace tunnel, which will be 7.4 m in diameter inside the 
concrete lining; and a surge shaft (28.0 m in diameter and 56.0 m deep); a 
steel-lined high pressure shaft and pressure tunnel; and the surface 
powerhouse itself. 
 
3.00     GEOTECHNICAL CHALLENGES 
 
Throughout the construction period the consultant and contractor have been 
faced with a number of challenges that continue to require the consideration 
of technical, financial, environmental, and social factors. A particular 
challenge are the variable geologic and geotechnical conditions throughout the 
project area, the subtropical climate, and the monsoon rains which can last 
several months. These required substantial redesign of cut slopes, rock 
support, and drainage measures to assure the stability and safety of all major 
excavations. Of particular concern was slope stability in both overburden  soils 
and bedrock. 
 
3.10     Desander Backslope 
 
Excavation of the desander backslope (see attached photograph and 
drawings) was critical in order to meet the construction schedule for river 
diversion in November of 1998 and begin foundation excavation for the 44.0 
m-high concrete gravity diversion dam. 
  
At the location of the diversion dam and desander facility bedrock consists 
mainly of dolomite and graphitic phyllite. The phyllite comprises the top part of 
the slope and overlies the dolomite. Beneath the dolomite is a thick undulating 
layer of black slate which is also found in the foundation of the diversion dam. 
The bedrock is extensively fractured, faulted, and locally deeply weathered 
and therefore of low strength. Construction of the 70.0 m-wide desander basin 
required extensive excavation into the left bank of the river near the left 
abutment of the diversion dam. The upper 50.0 to 75.0 m of the 120.0 m-high 
cut slope are located in weathered phyllite. The phyllite was cut too steep and 
became unstable. After re-evaluating the stability it was decided to flatten this 
part of the slope from about 45 degrees to 32 degrees and install drainage 
galleries. The additional time required to flatten and protect the slope with 
fibercrete was approximately four months. In order to make diversion as 
scheduled in November of 1998, it was decided to widen the desander basin 
to only 50.0 m and leave part of the lower cut slope in place.The stability of 
the desander backslope is monitored with inclinometers and optical survey 
points that are installed on the benches.  Stability analyses were carried out 
on both pre-and-post diversion cutslope configurations by implementing a 



 

 

number of computer codes such as EXAMINE2D, PHASES, SARMA, 
PCSTABL5, and the finite element code FLAC. The stability analyses were 
carried out using the most recent information available on geology and rock 
mass properties. Based on these observations and analyses it was decided to 
support the desander backslope between Elev. 575+00 and Elev. 543+00 with 
24.0 m-long rock dowels installed on 2.0 meter centers. The support system is 
identical to that installed in the surge tank backslope which is described in 
detail in the ensuing section. The decision on how to complete the remaining 
excavation of the desander backslope, including any amount of additional rock 
support needed, could be deferred until after diversion. 
 
3.20     Powerhouse and Surge Tank Excavations 
 
The powerhouse and surge tank excavations are located approximately 45.0 
km downstream from the diversion dam and desander facility. The supported 
cut slopes at these locations are steep and over 20.0 m high. The bedrock 
consists of graphitic phyllite which is fractured, folded, and locally deeply 
weathered.  A number of steeply dipping prominent joint sets (one set parallel 
to the foliation) are present in the rock mass. These contribute to the 
formation of large wedges controlling the stability of rock excavations. At both 
locations, the fresh phyllite is overlain by weathered phyllite and colluvial 
overburden soils or landslide debris. These soils vary in thickness and 
composition and become very unstable when saturated with water. Maximum 
rainfall at the project site is in the order of 2,000 mm/year.  Most of the 
rainfall occurs during the monsoon season which usually lasts four months 
starting in June and ending in September. 
 
3.21     Remedial Measures at the Powerhouse Excavation 
 
Slope failures in both the overburden soils and bedrock in the area of the 
powerhouse excavation required substantial regrading of the backslope and 
increased rock support. The nearly vertical cuts in the phyllite are over 23.0 m 
high and required additional support. Rock support was increased from 4.0 m-
long, 25 mm-diameter dowels spaced at 1.5 m to 12.0 m-long, 32 mm-
diameter dowels spaced at 2.0 m. All dowels function as fully grouted, 
untensioned rock bolts. They were installed over most of the approximately 
2,800 m^2 slope face exposed by the excavation. After installation of the 
dowels, the face was also covered with wiremesh and 10 to 15 cm of 
shotcrete. To prevent water pressure buildup behind the shotcrete facing, 
weepholes were punched through the shotcrete at regular intervals. The same 
type of rock support and drainage measures were also installed in the 
foundation of the 22.5 m-high gabion retaining wall immediately above the 
powerhouse excavation. The gabion wall rests on phyllite and conglomerate 
and was designed to permanently support the overburden soils of the 
powerhouse backslope. The powerhouse excavation also includes two 
drainage galleries which run along the entire approximately 120.0 m-long 
backslope. The stability of the powerhouse excavation, gabion retaining wall, 
and backslope was analyzed using the above referenced software. In addition, 
the computer codes DIPS, GAWAK and SWEDGE were implemented to 
evaluate fracture data, the stability of the gabion wall itself, and the stability of 
rock wedges. These wedges were present in the weak graphitic phyllite rock 



 

 

of the powerhouse cut slopes. The excavations are monitored with 
inclinometers and optical survey devices. The open cut of the powerhouse is 
comprised of approximately 72,000 m^3 of common excavation and 57,000 
m^3 of rock excavation. 
 
All rock support installed in the powerhouse excavation is being treated as 
temporary support. After completion of the powerhouse structure the space 
between the supported excavation and building will be backfilled, and tendons 
will be installed to function as permanent support. The tendons will be 
designed to take up additional loads including backfill loads, water pressure, 
and earthquake loads. 
  
3.22     Permanent RCC Cofferdam 
 
The powerhouse structure is over 35.0 m high, about 21.0 m wide, and about 
90.0 m long. It is positioned in such a way that its foundation elevation lies 
25.0 m below the flood level of the Kali Gandaki River. A permanent 
cofferdam was therefore required to complete the powerhouse excavation and 
protect the facility from flooding. The construction schedule required that the 
permanent cofferdam be completed in three months time to divert the Kali 
Gandaki River and protect the powerhouse excavation from the 1998 monsoon 
floods. In the meantime, the excavation would proceed under protection of a 
temporary cofferdam, an embankment dam, that was completed in the fall of 
1997. 
 
The many advantages of roller compacted concrete, especially speed of 
construction, led to the selection of an RCC dam. The RCC structure has a 
typical gravity dam section that is 18.0 m high and 15.5 m wide at the base. 
However, test borings completed in early March of 1998 revealed that the rock 
beneath the foundation of the proposed RCC dam was about 10.0 m  below 
that shown on the contract documents. Thus, there was only limited space to 
construct a cofferdam downstream of the tailrace outlet channel. The main 
concern in hesitating to proceed with the construction of the RCC alternative 
was differential settlement. Therefore, a more slender structure consisting of 
formed concrete anchored to the foundation was also considered. The thin 
anchored formed concrete alternative would be founded on rock (the number 
and capacity of anchors had not yet been defined) and the RCC dam would be 
founded partially on rock and partially on alluvium. 
 
Following several meetings, the RCC alternative was selected. To prepare the 
foundation, the upper two meters of alluvium would be removed and filled with 
tremie concrete. The RCC structure would be built on this concrete and the 
adjacent rock. Provisions would be included for a longitudinal joint to 
accommodate some differential settlement and, if the settlement was more 
than desirable, provisions would be included to construct a sheet pile wall on 
the river side and to grout the alluvium. The RCC cofferdam with the planned 
foundation treatment, if needed, was the preferred method. 
   
The permanent RCC cofferdam (the first RCC dam built in Nepal) is 18.0 m 
high and about 120.0 m long. The dam required placement of 26,500 m^3 of 
roller-compacted concrete.  Placement of RCC commenced April 8, 1998 and 



 

 

was completed July 7, 1998 just in time to protect the powerhouse excavation 
from a two-year flood.  During July the river discharge at the powerhouse 
remained at 1,200 to 2,500 m^3/second before experiencing the, so far, 
highest flood of 3,979 m^3/second on the 7th. This was a 2-year flood for the 
powerhouse site. This flood eroded the temporary cofferdam. Foundation 
settlements of the RCC cofferdam during the three-months construction period 
reached a maximum of 90 mm. No cracks were visible in the RCC at that time 
and seepage under and through the dam was minimal (< 10 liters/second). 
 
Additional information on construction of the powerhouse excavation and RCC 
cofferdam can be found in the attached photograph and drawings. 
 
3.23     Surge Tank Backslope and Shaft  
 
Final design of the surge tank backslope includes a 25.0 m-high steep cut in 
overburden soils and weathered phyllite that is supported with soil and rock 
dowels up to 18.0 m in length. This "permanent ground-nailed structure" (face 
area approximately 2,000 m^2) is currently one of the largest in the world. 
The method was selected to prevent cutting into the toe of an old landslide 
which would have removed much of the natural support of the slope. In 
applying this method, the 28.0 m-wide surge shaft was raised 13.0 m, thereby 
eliminating the need for extensive excavation and treatment of the surge tank 
backslope, and reducing the risk of a potential large slope failure. 
 
In the original design, the surge tank backslope was comprised of a 64.0 m-
high, nearly I.0H:1.0V cut, that was to be excavated in colluvium and 
weathered phyllite. Prior to excavation, the overburden soils were sampled at 
several locations along the natural slope. The test borings penetrated the 
overburden soils and bedrock and clearly indicated the presence of an old 
landslide. The slip surface of the slide and water table followed a zone of 
weathered phyllite which was found at a depth between 5.0 m and 15.0 m 
below the surface. The slide came to rest on a bench forming a passive 
wedge. Preliminary stability calculations confirmed that this wedge supported 
the natural slope in which the surge tank backslope was to be excavated. 
Before making a decision in steepening the cut slope to 1.0H:3.5V max. and 
thereby reducing its height to 25.0 m, which required raising the surge shaft 
13.0 m, adding 1,700 m^3 of concrete, additional more rigorous slope stability 
analyses were carried out to determine the benefits of changing the design. 
These analyses showed that the 25.0 m-high cut, although much steeper, had 
no effect on the global stability of the natural slope as most of the landslide 
material contained in the passive wedge would remain in place. The new 
design would have less quantity to be excavated and less area to be 
supported. About 30,000 m^3 in common excavation would be saved, thereby 
reducing environmental impacts. 
  
Excavation and support of the 25.0 m high cut slope commenced mid-June, 
1998 and was completed by the end of August, 1998. Common excavation 
was 22,500 m^3. Rock excavation amounted to 200 m^3. Soil and rock dowels 
consisted of 32 mm-diameter-Dywidag double corrosion protected  bars 
(Grade 60 steel with ultimate strength of 72 ksi), 12.0 m and 18.0 m long, 
installed on 2.0 m-centers. Depending on the availability of the 32 mm-



 

 

diameter bars, 25 mm-diameter bars were substituted and the spacing 
reduced to 1.75 m. Borehole diameter was 150 mm. The dowels were fully 
grouted and left untensioned. Three pullout tests were performed on dowels 
installed in overburden. These dowels took a load of about 15 tons without 
failure. The facing consisted of 15 cm of shotcrete reinforced with wiremesh. 
In the horizontal direction of the cut slope, dowel heads were supported by 
four sets of continuous waler bars, 16 mm in diameter. The same number and 
size of bars were used to support the dowel heads in the vertical direction. 
The vertical reinforcing bars were cut in 0.75 m sections. In addition, the 
dowel heads were supported by 20 mm-thick steel plates (300 mm x 300 mm 
in size) that were encased in shotcrete. Drainage of the slope was provided by 
15.0 m-long perforated PVC-pipes (100 mm in diameter) installed on 4.5 m 
centers at two specified elevations and weepholes punched through the 
shotcrete at regular intervals. 
 
Design of the permanent ground-nailed structure of the surge tank backslope 
was performed with the aid of the computer software SNAIL. The computer 
codes PHASES and EXAMINE2D were used to determine the stresses that 
were transfered from the supported cut slope to the rock mass beneath the  
5.0 m-wide and 5.0 m-deep cone-shaped, reinforced concrete shaft collar. In 
these analyses the height of the supported cut slope was increased to 30.0 m 
maximum. Stability evaluation of rock wedges in the fresh phyllite below the 
shaft collar and design of rock support for the 28.0 m-wide surge shaft were 
performed with the aid of the computer codes DIPS, SWEDGE and 
UNWEDGE. Three inclinometers were installed to monitor the stability of the 
surge tank backslope and one inclinometer to monitor the stability of the shaft 
itself. 
 
Additional information on design and construction of the surge tank backslope 
and shaft can be found in the attached photograph and drawings. 
 
4.00     NEPAL 
 
Nepal (population of about 18.5 million) is a land-locked country between 
India and China, with an area of 147,181 km^2. The main mountain ranges 
are the Himalayas in the north, the Mahabharat (middle mountains), and the 
Siwaliks in the south. Eight of the total of fourteen mountains of the world 
which are over 8,000 meters (26,000 feet) high are in the Nepal Himalayas.   
 
4.10     Hydropower Development 
 
The two basic conditions for hydroelectric power, namely, an abundance of 
water and great differences of altitude, are present in Nepal to an 
extraordinarily favorable extent. About twelve big rivers cross the country from 
the north to the south. These rivers all originate in the snow-covered 
Himalayas, and thus have abundant water reserves in the form of snow and 
ice. As a consequence, the water level in the rivers does not fall below a 
relatively high point, even during the dry season and in the winter. The 
principal rivers in Nepal are the Karnali, the Kali Gandaki, the Marsyangdi, the 
Buri Gandaki and Trisuli, the Arun, and Kosi. These rivers have a very high 
potential to generate hydropower, giving a total potential for the country of 



 

 

about 83,000 MW.  
 
Only about 0.5 percent of the country's technically feasible hydropower 
potential has so far been developed. The technically feasible potential is 
estimated to be 45,600 MW. The country has 292 MW of installed capacity at 
power plants of all types, of which 250.5 MW is hydrocapacity. The three 
largest hydro plants in operation are: the Kulekhani I and II storage plant (92 
MW, 99.67 GWh), Marsyangdi (60 MW, 101 GWh, run-of-river plant) and 
Trisuli/Devighat (35.1 MW, 191.8 GWh, run-of-river plant). 
 
Of the 817 MW of hydro capacity originally planned for new development, 
which included Arun 3 (201 MW, 68 m gross head, 3 units) and West Seti (360 
MW, 187 m cross head, 4 units), only 341.4 MW are currently committed. The 
committed hydropower plants include Middle Marsyangdi (61.2 MW), Upper 
Bhode Koshi (36 MW), Kali Gandaki (144 MW), Khimti (60 MW), Modikola (14 
MW), Chilime (20 MW), and Puva Khola (6.2 MW). Of the committed plants 
Kali Gandaki "A", Khimti, and Upper Bhode Koshi are presently under 
construction. 
 
4.20     Future Outlook 
 
The government has formulated a policy to encourage private sector 
participation in the development of hydropower and delicensed hydropower 
plants of less than 1 MW capacity. Private sector projects presently under 
construction include the 36 MW Upper Bhode Koshi HEPP located 
approximately 100 km east of Kathmandu in the Himalayas near the Chinese 
border. This project will eventually be extended to include the 115 MW Lower 
Bhode Koshi HEPP.  
 
Much potential has been identified for dams exceeding 200 m height, with 
hydro plant capacities of between 200 and 10,000 MW. Medium-sized 
hydropower development such as Kali Gandaki "A" is a priority to meet 
domestic demand, whereas larger hydropower projects such as West Seti  
and other projects planned on the Karnali are a priority for power export to 
India.  Small, Mini, and Micro hydropower development (defined as plants with 
capacity less than 5 MW, up to 1 MW, and up to 100 kW respectively) is being 
encouraged to supply electricity to remote locations through an isolated 
system basis. There are 347 small, mini or micro plants in operation according 
to these definitions, with a total capacity of 15.5 MW. Funding the high costs 
of medium-sized and large projects, and the market, are the main constraints 
for future hydro development in Nepal. 
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 KALI  GANDAKI "A" HYDRO ELECTRIC POWER PROJECT, NEPAL

Head Waters of Kali Gandaki River

The Kali Gandaki River originates in the Mustang Himal near theTibetan  border at an
elevation of about 5,000 meters (15,000 feet) north of the Himalayan Range, the Annapurnas
(see attached maps). The drainage area of that region is roughly 1,000 miles^2.  However, the
climate here is very dry as the region lies in the rain shadow of Himalayas.  As shown in the
photograph below, the river is little more than a trickle during most of the year and is easily
forded on horseback or even on foot.  In contrast, the project is located about 100 miles air
distance to the south in the hot and humid subtropics, affected by the monsoon rains, at an
elevation of about 400 meters (1,200 feet) near the town of Tansen.

Photo by H. Ueblacker, May 27, 1998

View  to the south from Kagbeni near Jomsom with Kali Gandaki River and Nilgiri North
(7,061 meters, 23,160 feet) of the Annapurna Range in the background.



KALI  GANDAKI "A"  HYDROELECTRIC POWER PROJECT, NEPAL

Surge Tank Excavation

Illustrated below is the permanent soil-nail structure of the surge tank backslope. The cut
(1.0H:3.5V max.)  in colluvial soils (landslide debris) and weathered phyllite is 25.0 m high.
The support  system consists of double corrosion protected soil and rock dowels 25 mm and
32 mm in diameter  (Grade 60 Steel, 72 ksi UTS ), 12.0 m and 18.0 m long, installed on 1.75
m and 2.0 m centers.  The face of  the cut slope is covered with 15 cm of shotcrete  (fibercrete)
reinforced with wiremesh and waler bars. The area  of the slope face covered with shotcrete
is approx. 2,000 m^2.  Construction time was 2.5 months. Please refer to the attached
drawings
(Status of Surge Shaft and Penstock - March and August, 1998;  Surge  Tank Excavation
Plan;  Surge Tank Excavation Sections; and Surge Tank Geological Cross-Section A-A) for
additional details on geology, design , and construction.

Photo by H. Ueblacker, September 9, 1998
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